

Self-Supervised Object Detection with Multimodal Image Captioning

Max Hamilton, Madhav Kumar, Kemmannu Vineet Rao, Kshama Nitin Shah, Wen Jay Lim

Motivation

Most SOTA object detection methods use supervised learning

- High reliance on large amounts of labeled data
- Heavy reliance on representation of training data
- Can have poor generalization to real world examples

Background

Multimodal Representation Learning

- Joint representation of images and text
- Image summarization gives context to the image
- Can be used to "label" data without expensive human supervision

Redcaps Dataset

- Used image captioning on Reddit data as a pre-training task to learn joint representations of images and text
- The curated captions in Redcaps are created by the users, hence it contains rich semantic information compared to other generic images

VirTex-v2 Model

- Desai et al. proposed VirTex model that jointly learns visual representations from semantically rich captions
- Then discards the textual backbone to finetune on several downstream tasks

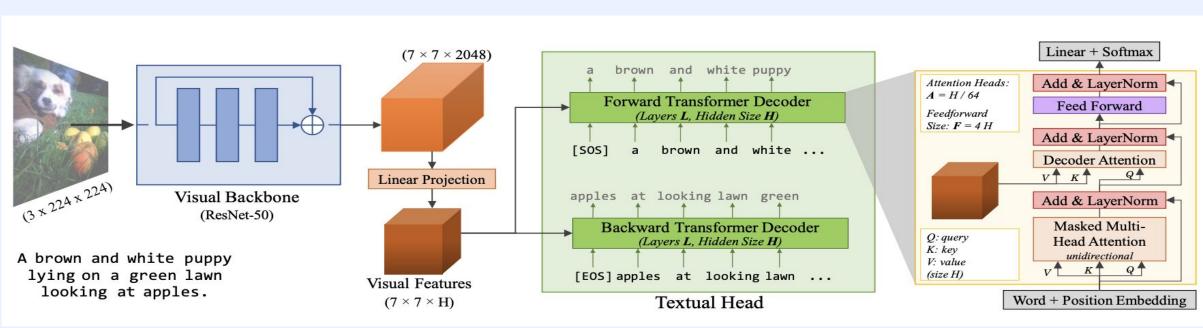


Fig:1 Desai et al ,"VirTex:Learning Visual Representations from Textual Annotations ",CVPR 2020

• Target Extraction using Wordnet Database

- Used to connect nouns from generated captions to dataset labels
- Lexical database linking words by their semantic similarity
- Can be used with parts-of-speech tagging to calculate similarity code to generate words of interest

Fig:2 Workflow of Target Extraction Module

GradCam

- Computes gradient of input image with respect to words of interest in caption
- Generates a heatmap localizing objects in image corresponding to a particular word in the generated captions

FCOS Object Detection Module

- FCOS is a fully convolutional one stage object detector which is anchor-free
- We use a novel modified version of GloU loss to account for the noise in the pseudo bounding boxes

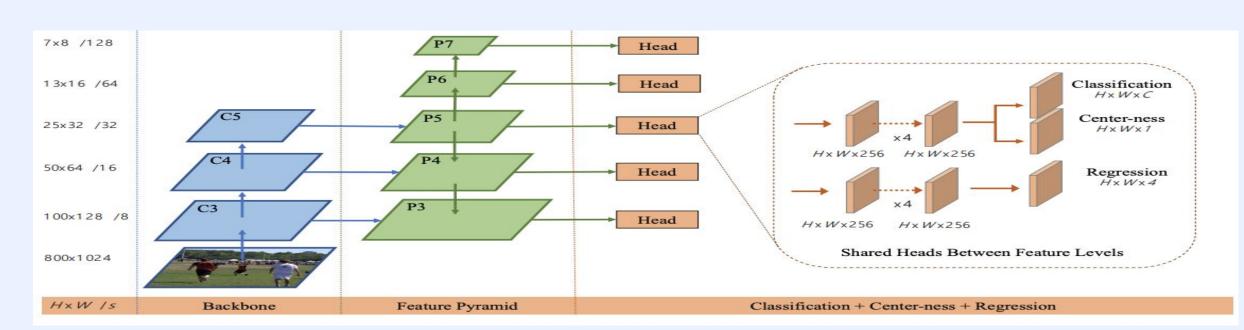
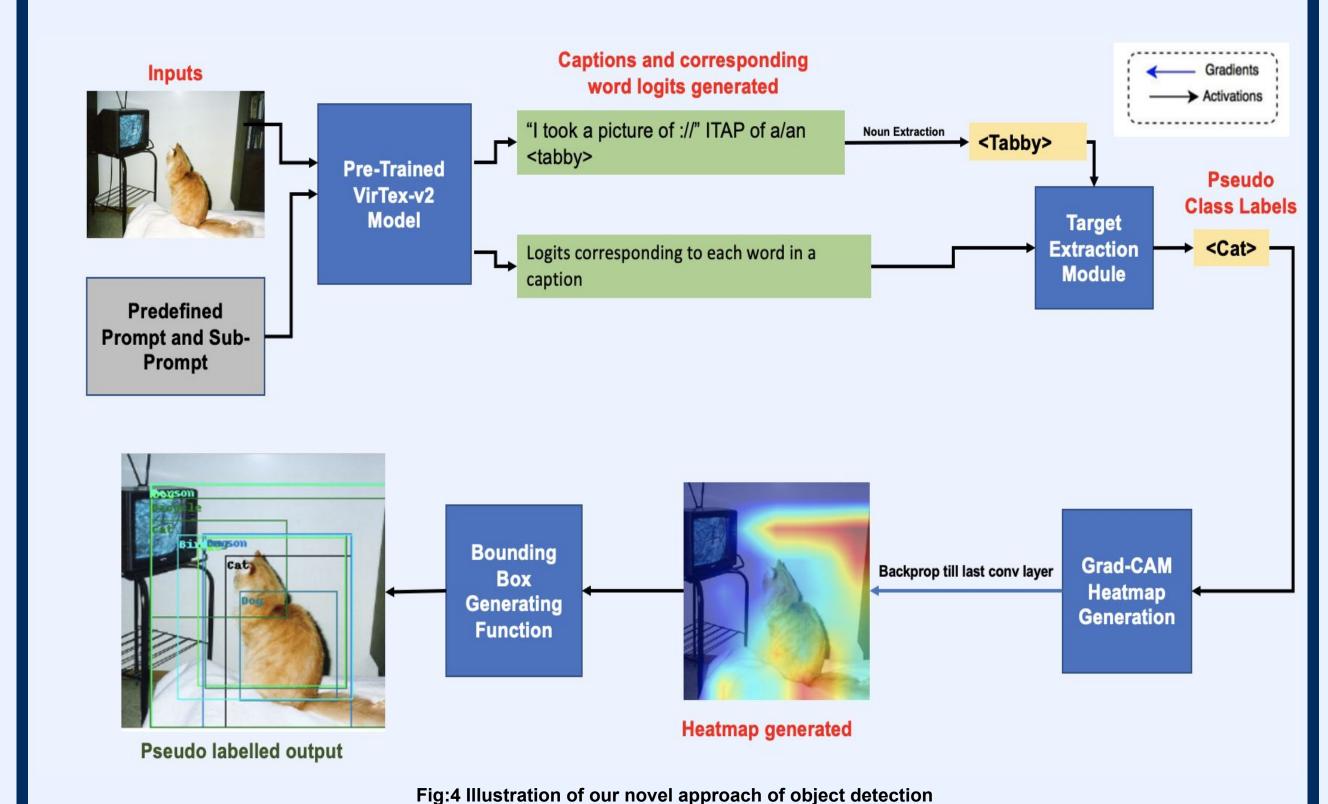


Fig 3: Tian et al, "FCOS: Fully Convolutional One-Stage Object Detection", ICCV 2019

Methodology

Our novel method consists of the following steps:

- 1. Generating Captions: We modified the existing VirTex-v2 to get output logits as well as logit to word mapping for the generated caption.
- 2. Prompt Engineering: Performed zero-shot transfer using the sub-prompt "I took a picture of and prompt "Itap" to generate pseudo class labels.
- 3. Generating Heat Maps: The pseudo class labels are used to generate class activation maps for that specific query to spatially locate the corresponding object.
- **4. Object Detector:** Finally, we used the generated location information to train an object detector using novel modified box loss without any ground truth annotations.



rig.4 illustration of our nover approach of object detection

Experiments and Results

Input Image	Thresh	Logits	Nouns	Target(n)
	Logit: -7.13 Sim: 0.62	'picture', 'dog', 'person', 'man', 'girl', 'friend', 'beautiful', 'hand', 'boy', 'guy', 'blue', 'baby', 'beach', 'street', 'woman',	'dog', 'person', 'man', 'girl', 'friend', 'boy', 'guy', 'baby', 'bird', 'woman', 'friends', 'bike', 'boat',	person(40), dog(2), bicycle(2), sheep(2), bird(1), boat(1), car(1), cat(1), chair(1), cow(1), horse(1)
	Logit: -7.13 Sim: 0.62	'dog', 'beach', 'street', 'pup', 'bull', 'husky', 'bulldog', 'horse', 'cow', 'doggo', 'goat', 'sheep', 'stray',	'dog', 'beach', 'street', 'pup', 'bull', 'husky', 'bulldog', 'horse', 'cow', 'goat', 'sheep', 'stray',	dog(14), sheep(7), cat(4), bird(3), horse(1)

Fig:5 Two Representative cases showing Target Extraction using WordNet
Sim: similarity score between classes in the dataset and words in the generated captions
Logit: Probability of token appearing in the caption

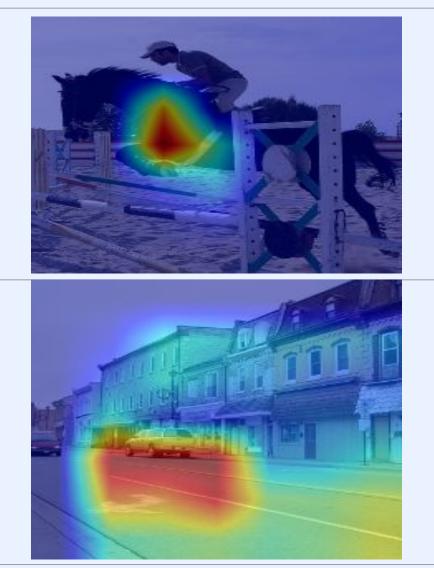
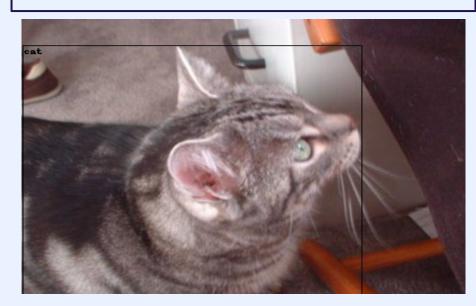


Fig:6 Experimental Heat Maps Generated

Experiments and Results

- Dataset Used for Evaluation and Fine-Tuning: Pascal VOC 2007
- Evaluation Metric Used: mAP
- Hyperparameters used for experimentation: Logit Thresholds, GradCAM method, Duplicate Predictions Removal Function, usage of Eigen smoothing

GROUND TRUTH BOX AND LABEL



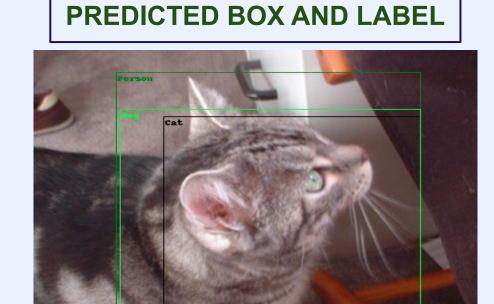


Fig 7: Illustration of Ground truth bounding boxes and Pseudo bounding boxes

mAP	GradCAM Method Used	Duplicate Removal Function	Eigen Smoothing
10.64%	GradCAM	Mean	No
12.4%	GradCAM++	Median	Yes
17.43%	GradCAM++	Mean	No

Fig 8: mAP results after testing with various hyperparameters

Conclusions

- With a pipeline combining image captioning, gradient heatmap generation, and hand crafted methods to fit each part together, we were able to create a system to generate labelled object detection data autonomously
- We were able to achieve the best mAP score of 17.43% when compared to the original datasets
- Although there is further work to be done, we have shown that our method of autonomous data generation is feasible and yields fruitful results

Future Work

Research improvements for bounding box noise

- Many bounding boxes are generated for each class and merging them into a single accurate bounding box is an ongoing challenge
- It is difficult to differentiate between multiple instances of a single class in an image and multiple bounding boxes generated for the same instance - we currently threshold IoU of boxes to determine instance separation

Improvements to label assignment

- Some words, like names, are hard to assign to a particular class from text alone
- Slang words or abbreviations are tough to deal with

Selected References

- K. Desai, G. Kaul, Z. Aysola, and J. Johnson. RedCaps: Web-curated image-text data created by the people, for the people. In NeurIPS Datasets and Benchmarks, 2021.
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128(2):336–359, Oct 2019.