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Winograd Convolution for 8-bit Precision with flexible input 

size 

1. Introduction 
Convolutional neural networks (CNNs) have been widely used in computer image processing. 

Many embedded applications have limited performance, and the power consumption and CNNs are 

computationally intensive and consume large amounts of processing time, making it challenging to apply 

them to these types of applications. Low-precision computations are considered promising methods to 

accelerate convolutional neural networks and have been demonstrated that 8-bit precision has a minimal 

accuracy degradation. The Winograd algorithm is a fast convolution method that transforms inputs and 

weights into another domain, where convolution becomes element-wise multiplication and then returns 

the results [1]. This transformation reduces the computational theoretical complexity, but the main 

problem that transformations bring is the loss of the accuracy of the results. As the transformation 

matrices (Vandermonde matrices) have bad properties in the real field, the numerical error increases 

exponentially with the output size [2]. However, Winograd Convolution and low-precision computation 

are not widely combined due to the numerical error introduced. This project explores the loss caused by 

the matrix transformation using 8-bit low-precision linear quantization. This type of architecture can be 

beneficial for applications that explore performing Machine learning on small and low-powered devices.  

2. Project Flow 

2.1 Background 

Quantization 

Quantization is one of the most impactful ways to decrease the computational time and energy 

consumption of neural networks. In neural network quantization, the weights and activation tensors are 

stored in lower bit precision than the higher bits they are usually trained in. If we quantize from N to 
𝑁

2𝑁 

bit representation, then the memory overhead of storing model weights decreases by a factor of 2𝑁 while 

the computational cost for matrix multiplication decreases significantly by a factor of 22𝑁. Neural 

networks have been shown to be robust to quantization, meaning they can be quantized to lower bit 

widths with a relatively small impact on the network’s accuracy. 

  The major downside of neural network quantization is that Low bit-width quantization introduces 

noise to the network that can lead to a drop in accuracy. One must make sure, there is not a lot of decrease 

in accuracy while accounting for the quantization of neural networks. 

Types of Uniform Quantization:  

1) Asymmetric Quantization: Also known as asymmetric quantization is defined by three 

quantization parameters:  

a) scale factor: s  
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b) zero-point: zp  

c) Bit-width: b 

The scale factor and the zero-point are used to map a floating-point value to the integer grid, 

whose size depends on the bit-width. The scale factor is commonly represented as a floating-point 

number and specifies the step size of the quantizer. The zero-point is an integer that ensures that 

real zero is quantized without error. This is important to ensure that common operations like zero 

padding or ReLU do not induce quantization error. 

2) Symmetric Quantization:  

Symmetric quantization is a simplified version of asymmetric quantization. The symmetric quantization 

maps the zp to 0. This reduces the computational overhead of dealing with zero-point offset during the 

accumulation operation. But the lack of offset restricts the mapping between integer and floating-point 

domains.   

 

Figure 1. Conventional quantization scheme 

Types of Quantization Errors:  

1) Rounding Error: Arises due to rounding the floating-point values to the integer scale.  

2) Saturation Error: Arises due to clipping the values that fall outside the quantization range.  

At each layer, error accumulates due to the following above errors and leads to decrease inaccuracy of the 

model. So extra investigation must be done before quantizing the ML models.  

Model Quantization techniques: (for tinyML applications):  

How we quantize models depends upon the level of the given ML model.  

1. Simple 8-bit Quantization: Quantize floating-point model parameters to 8-bit and don’t do 

anything else. 

2. Post Training: In-place changes in the model are required -weights rescaling, quantization 

ranges rescaling. 

3. Fine Tuning: Needs significant fine-tuning afterward (Cross-layer weights equalization).  

4. Architecture Changes: The model needs to be trained from scratch considering quantization, 

we generally try to avoid this as this includes a lot of computational time and energy.  
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For this course project, we are assuming our model to be simple 8-bit type model and we are just 

quantizing the model parameters by quantization schemes.  

Cross-layer weight equalization and Ada Round which reduces the Frobenius norm ||𝑊 − �̂�||𝐹 and 

||𝑊𝑥 − 𝑊�̂�||𝐹 is left for the future scope due to the time constraint.  

Winograd algorithm: 

 Winograd convolution is based on Winograd minimal filtering algorithm that computes an 

𝑚 × 𝑚 output matrix 𝑌 by convolving (𝑚 + 𝑘 − 1) × (𝑚 + 𝑘 − 1) input matrix d with 𝑘 × 𝑘 kernel 𝑔 as 

shown in figure 1. It reduces the number of multiplications at the cost of additions [3]. 

  

Figure 2. Patches in a 7x7 Image  

A convolution layer in CNN with 𝑘 × 𝑘 convolution kernel can be computed using the Winograd 

algorithm with a configuration of 𝐹(𝑚 × 𝑚, 𝑘 × 𝑘). In our convolution engine we use 𝐹(2 × 2, 3 × 3). 

The Winograd Equation is as follows: 

 𝑌 =  𝐴𝑇[[𝐺𝑔𝐺𝑇] ⊙ [𝐵𝑇𝑑𝐵]]𝐴 

For the 𝐹(2 × 2, 3 × 3) the following arrays are used (calculated using the Winograd 

algorithm)[1].  

 

Looking at the Winograd equation we see that the matrix 𝐺𝑔𝐺𝑇 can be computed offline and 

stored in the engine. 𝐵𝑇𝑑𝐵 reduces to additions and subtractions. 

 

 



Aditya Gupta, Miguel Ortiz Lopez,  

Sanjeeth Ayanala, Vineet Rao 

 

 4 

2.2 High-Level Description and workflow 

In this project, we aim to use our Winograd engine (implemented in hardware) as a part of an 

inference cycle (performed in Matlab). In our example, we use weights trained for the MNIST fashion 

dataset and then perform the inference cycle with the convolution performed through the Verilog 

implementation

 

Figure 3. High-Level Description 

Figure 2 represents the overall flow of our project and gives an overview of the different elements 

that we aimed to investigate. The key components of our project are the quantization blocks, flexible 

input Winograd convolution engine, and finally operations to perform inference (ReLu, Max-pool, 

Flatten, and Softmax).  

2.3 Design Decision and Our architecture 

 

 For our project, we have attempted to implement the mathematical equations in the Verilog 

engine by pre-calculating the additions for the [𝐺𝑔𝐺𝑇] and [𝐵𝑇𝑑𝐵] matrices. The reason why we chose 

such a simplistic design is to reduce the complexity of the design and reduce the delay for our specific 

design. Previous work used an FPGA accelerator to increase the performance due to FPGAs' flexibility, 

energy consumption, and performance. The chip computation engine optimization permits highly parallel 

strategies by customizing parallel processing elements. These implementations can achieve high 

performance that exceeds CPUs, but we do not choose this architecture because our weights are constant. 

Architectures like parameterized systolic arrays and hierarchical memory subsystems [3] are used when 

the same engine is used with different weight filters as inputs. Our architecture needs to access memory 

only to read the new inputs and not the filters. Thus, we use a patch-based inference with reduced overlap 

similar to the MCUNetV2 with a stride of 3[4]. The details of the implementation are in section 3.1. 

(Module functionality). When applying it to our Winograd engine, due to the static nature of filters (no on 

the fly computation for the 𝐺𝑔𝐺𝑇 matrix) and simplified 𝐵𝑇 and 𝐴𝑇 matrices we can just translate the 

matrix multiplications into simple additions in hardware. We can then use multiple of these units to make 

a complete convolution unit as shown in figure 2. In our design, a single unit of the Winograd engine can 
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take up to 100 × 100 × 3 data. Most practical datasets, such as the MNIST fashion dataset that we are 

using, utilize an image size within this range. In this way, each unit of our engine can accommodate 

flexible input sizes and channels in the range specified above. 

3. Module descriptions and their Implementation Details        

  

Figure 4. Winograd Engine 

3.1 Data Processor 

This module takes the quantized data from the memory and sends it to the Convolution Module in 

a patch-wise manner. 

3.1.1 Block Diagram 

        

Figure 5. Block Diagram of the data processing module 

3.1.2 Port Description 

Parame

ter 

Input/Outp

ut Type 

Data Type                     Description 

N Input 2-bit Integer Indicates the number of input channels 

W Input 8-bit Integer Indicates the width of input image 
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H Input 8-bit Integer Indicates the height of input image 

dataIn1 Output 128-bit Integer (4*4) patch corresponding to channel 1 

(i.e., 16 values with 8 bit each)  

dataIn2 Output 128 bit Integer (4*4) patch corresponding to channel 2 

(i.e., 16 values with 8 bit each)  

dataIn3 Output 128-bit Integer (4*4) patch corresponding to channel 3 

(i.e., 16 values with 8 bit each)  

 

3.1.3 Module Functionality 

            This Module takes data from the memory, packs the data as a patch, and sends the patch data to 

the convolution module. Each cycle, this module sends 1 patch data per channel to the convolution 

module by picking the values from the memory from appropriate positions. Since the memory is 1-

Dimensional, and the patch data is not completely different from the other patches, the data cannot be 

directly driven in a sequential manner.  Given an example of a 7x7 image (Figure 5) with 4 patches (each 

4x4). We can clearly see that the patches overlap with each other in figure 5, the overlap is minimum due 

to the stride of 3.  

 

           
 

Figure 6. Patches in a 7x7 Image  

 

From figure 5, we can see that the way of picking the data from the 1-Dimensional memory is not 

sequential. For example, in a patch_width = 4 and patch_height = 4, the procedure of picking the different 

patch’s data from the memory is represented in Figure 6. 
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Figure 7. 1-D Memory representation for first two patches 

 

For patches 1, the start position is set to Index (Index is zero as shown in figure 6). While 

computing patch 1 (4*4 matrix = 16 values), the positions of 16 values are given below.  

  

Row 1 4 values from Index 

Row 2 4 values from Index+ width 

Row 3 4 values from Index+ width*2 

Row 4 4 values from Index+ width*3 

   

For patch 2, the start Index value is incremented by 3. While computing patch 1 (4*4 matrix = 16 

values), the positions of 16 values are directly calculated by replacing (Index) with (Index+3) in the above 

table. 

 

Patches 3 and 4 are computed as shown in Figure 8. 
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Figure 8. 1-D Memory representation for last two patches 

 

While computing patch 3 and 4 (4*4 matrices), the start position changes to new index 

(new_index = old_index + width*height). Now, the same procedure is repeated to find patches 3 and 4. 

3.2 Convolution Engine 

This module takes the input data from the Data Processor module, performs the convolution, 

whose output is then taken into MATLAB for de-quantization. 

3.2.1 Block Diagram 

                        

 Figure 9. Convolution Engine block diagram  
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3.2.2 Port Description 

Parameter Input/Output

Type 

Data Type                           Description 

dataIn1 Input 128-bit Integer (4*4) patch corresponding to channel 1 (i.e., 

16 values with 8 bit each)  

dataIn2 Input 128-bit Integer (4*4) patch corresponding to channel 2 (i.e., 

16 values with 8 bit each)  

dataIn3 Input 128-bit Integer (4*4) patch corresponding to channel 3 (i.e., 

16 values with 8 bit each)  

N Input 2-bit Integer Indicates the number of input channels 

dataOut Output 64-bit Integer (2*2) output patch after Convolution (i.e., 4 

values with 16 bit each) 

 

3.2.3 Module Functionality 

This Module takes the input from Data Processor Module, Performs the Winograd Convolution, 

and sends out the convoluted patch. This module has been designed to support a maximum of 3 channels 

(can be extended to more channels with some minimal changes in the design). Based on the input 

received from the data processor module (dataIn1, dataIn2, dataIn3, N), the module performs the 

convolution in parallel for N channels. The Winograd Convolution function is:  

 

𝑌 =  𝐴𝑇[[𝐺𝑔𝐺𝑇] ⊙ [𝐵𝑇𝑑𝐵]]𝐴 

 

𝐺𝑔𝐺𝑇 is computed offline and stored in an LUT (G[0], G[1], . . . . . . . , G[15]). (Since 𝐺𝑔𝐺𝑇is a 

4*4 matrix => 16 values). 

 

Each cycle, one patch per channel (16 values) is the input for the Convolution Engine. These 16 

values are stored in an LUT (d[0], d[1], . . . . . . . , d[15]).  

 

Now, to compute 𝐵𝑇𝑑𝐵, since the B matrix is constant, the computations are done in MATLAB, 

and hardware efficient equations are computed and directly implemented in Verilog. Each cycle, data (d) 

corresponding to each channel is received and 𝐵𝑇𝑑𝐵(4*4 Matrix with 16 values) is computed using the 

equations given below. 
D[0] = d[0] - d[2] - d[8] + d[10]; 

D[1] = d[1] + d[2] - d[9] - d[10]; 

D[2] = d[2] - d[1] + d[9] - d[10]; 

D[3] = d[1] - d[3] - d[9] + d[11];  

D[4] = d[4] - d[6] + d[8] - d[10]; 

D[5] = d[5] + d[6] + d[9] + d[10]; 
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D[6] = d[6] - d[5]- d[9] + d[10]; 

D[7] = d[5] - d[7] + d[9] - d[11]; 

D[8] = d[6] - d[4] + d[8] - d[10]; 

D[9] = d[9] - d[6] - d[5] + d[10]; 

D[10] = d[5] - d[6] - d[9] + d[10];  

D[11] = d[7] - d[5] + d[9] - d[11]; 

D[12] = d[4] - d[6] - d[12] + d[14]; 

D[13] = d[5] + d[6] - d[13] - d[14]; 

D[14] = d[6] - d[5] + d[13] - d[14]; 

D[15] = d[5] - d[7] - d[13] + d[15]; 

Where D is an array that holds the 16 values of  𝐵𝑇𝑑𝐵 Matrix.  

 

We now have 𝐵𝑇𝑑𝐵 and 𝐺𝑔𝐺𝑇. The pointwise multiplication of  𝐵𝑇𝑑𝐵 and 𝐺𝑔𝐺𝑇 is directly 

implemented in hardware as given below. 
F[0] = G[0] * D[0]; 

F[1] = G[1] * D[1];  

F[2] = G[2] * D[2];  

F[3] = G[3] * D[3];  

F[4] = G[4] * D[4];  

F[5] = G[5] * D[5];  

F[6] = G[6] * D[6];  

F[7] = G[7] * D[7]; 

F[8] = G[8] * D[8]; 

F[9] = G[9] * D[9];  

F[10] = G[10] * D[10];  

F[11] = G[11] * D[11];  

F[12] = G[12] * D[12];  

F[13] = G[13] * D[13];  

F[14] = G[14] * D[14];  

F[15] = G[15] * D[15]; 

Where F is an array that holds the 16 values of  𝐵𝑇𝑑𝐵 Matrix.  

 

We have [𝐺𝑔𝐺𝑇] ⊙ [𝐵𝑇𝑑𝐵] which is ‘F’. To compute,   𝐴𝑇 ∗ 𝐹 ∗ 𝐴, we use the below equations. 

 
o[0] = F[0] + F[1] + F[2] + F[4] + F[5] + F[6] + F[8] + F[9] + F[10]; 

o[1] = F[1] - F[2] - F[3] + F[5] - F[6] - F[7] + F[9] - F[10] - F[11]; 

o[2] = F[4] + F[5] + F[6] - F[8] - F[9] - F[10] - F[12] - F[13] - F[14]; 

o[3] = F[5] - F[6] - F[7] - F[9] + F[10] + F[11] - F[13] + F[14] + F[15]; 

Where ‘o’ is an array which holds the 4 values of  𝐴𝑇[[𝐺𝑔𝐺𝑇] ⊙ [𝐵𝑇𝑑𝐵]]𝐴 Matrix.  

 

These four values are packed together and sent out as a 64-bit value as given below with each value being 

a 16-bit output: 

dataOut = {o[0], o[1], o[2], o[3]}; 
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4. Results     

4.1 Verilog output vs MATLAB output and their error results 
 

 To test the correctness of the outputs of the Winograd engine in Verilog, we compared the values 

generated in the DVE simulation with the values obtained from the Verilog. Figure 10 shows the 

quantized outputs in HEX obtained from the engine and Figure 11 (b) shows their dequantized values. 

Looking at Figure 11(a) we realize the results are close. 

 

 
Figure 10. DVE simulation results 

 

  

         

 (a)  No quantization Winograd convolution in matlab        (b) De-quantized(in MATLAB) Verilog values 

 

Figure 11. Comparison Verilog vs MATLAB.  
 

4.2 MATLAB inference 

 

An inference cycle runs trained weights with an input image to get an actual classification output. 

We built this in MATLAB with the aim of determining the accuracy of inference from our low-bit 

precision engine vs. from a 32-bit inference cycle. Figure 12 shows the accuracy between inference from 

the two engines. 100% accuracy implies no discrepancy in the predictions from the 32-bit inference cycle 

and the x-bit inference cycle (x < 32). 



Aditya Gupta, Miguel Ortiz Lopez,  

Sanjeeth Ayanala, Vineet Rao 

 

 12 

 
Figure 12. Percentage accuracy from inference  

 

5. Conclusion 

In this project, we proposed a Winograd Convolution using low-precision quantization. We show 

that in our tests, the accuracy of 8 bits quantization transformations is good enough for the Winograd 

algorithm with kernel 3x3, output 2x2, and a stride of 3. For 8 bits precision, Winograd had a  6% 

accuracy loss compared to Winograd in floating-point precision. Lower precision induces error in each 

convolution that reduces accuracy at least by 44%. This experimental result suggests that Winograd 

convolution can speed up with trivial accuracy loss. However, different filters and output sizes need to be 

evaluated in order to determine the limitation of Winograd Convolution. The transformation used for this 

implementation is expected to increase the error as the output and filter size increase.  

5.1 Limitation 

The main limitation of our design is the ability to use the same engine to perform different 

convolutions or use different kernels. In our design, 𝐺𝑔𝐺𝑇was calculated offline and uploaded to the 

hardware. If  𝐺𝑔𝐺𝑇needs to be calculated on the flight, our design is significantly limited by the amount 

of system memory access allowed by the in each clock cycle and other architectures like systolic arrays 

need to be considered.  

5.2 Future work  

One of the difficulties in designing CNN for applications like TinyML is the limited data storage 

and computation resources[5]. To reduce the number of multiplications, pruning is a good approach. It 

Has been demonstrated that 90% of sparsity can be achieved without losing accuracy [6]. A Winograd 

sparse convolution may be the next step to optimize our design. If a more flexible convolutions engine is 

needed, changing our Winograd convolution for a systolic array architecture is the best alternative to 

maintain system performance. 
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