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Abstract

This paper explores the question of what is more im-
portant for representation learning - data diversity or view
diversity. Toddlers constantly create learning experiences
by actively manipulating objects and self-selecting object
views for visual learning. With a limited variety of training
data, toddlers are able to generalize and learn what objects
are and their different categories. The data obtained from
infants’ everyday learning exhibit frequency distributions
where a small number of categories are highly prevalent
while most other categories are encountered infrequently.
The learning data from their surrounding environments fol-
lows a long-tailed distribution. Nonetheless, the commonly
occurring categories are observed from various viewpoints
which encode multiple types of invariances to the objects
which could promote generalization across all categories.
Through this project, we were able to show that if the learn-
ing algorithm is trained in data statistics similar to what in-
fants see in their everyday environment in their early devel-
opmental period, then the algorithm would be better able to
recognize objects in different contexts and viewpoints. The
main question we have addressed through our experiments
is view diversity seems to be more important for learn-
ing. We also explore the most optimal learning objective
for this view-diverse data and find that a supervised con-
trastive learning objective pre-trained on this view-diverse
data achieves the best results. We plan to release our code
and checkpoints lhere.

1. Introduction

Toddlers have a wide-ranging knowledge about the
world around them.[3] They can discriminate between com-
mon categories, such as simple shapes and animal classes,
even before learning to speak. The main question we are
addressing is whether this early knowledge comes from a
better learning objective or it emerges from having better
inductive biases to learn from (modeled as having a better
dataset).

In this paper, we want to address this question by lever-
aging two methodologies - a supervised learning objective
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using cross-entropy loss and a supervised contrastive learn-
ing objective using a contrastive loss. We pre-train these
models and evaluate them using two datasets - one egocen-
tric toy dataset namely ToyBox [6] dataset and a standard
classification dataset namely CIFAR10. We trained both the
supervised cross-entropy and supervised contrastive models
on videos of toys that are commonly used by toddlers and
CIFARI10, with the goal of extracting useful high-level vi-
sual representations. The acquired visual representations
were then evaluated based on their ability to distinguish
common visual categories in the child’s environment, us-
ing only linear probes. Our results demonstrate, that su-
pervised contrastive learning methods learn visual repre-
sentations that generalize better as they minimize the intra-
class variance along with maximizing the inter-class vari-
ance whereas supervised cross-entropy learning methods
maximize the inter-class variance but ignore the intra-class
variance.

2. Related Work

In this section, we discuss the relevant methods for Su-
pervised Learning, Supervised Contrastive Learning, and
Curriculum naturally developed by toddlers.

2.1. Supervised Learning

Supervised learning is a machine learning technique
where a model is trained on labeled data to make predic-
tions on new data. The model learns to map input data to
output labels through a process of minimizing a predefined
loss function.

2.2. Cross-Entropy Loss

Cross-entropy is a widely used loss function that lever-
ages the concept of information theory entropy. It quanti-
fies the disparity between two probability distributions over
a specific set of events or random variables.

This loss function is versatile and can be utilized in both
binary and multi-class classification tasks to evaluate the
difference between the predicted and actual probability dis-
tributions.

One of the main shortcomings of this loss function is that
it is not robust to noisy labels, has poor margins, and thus
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might lead to poor generalization performance.

2.3. Self-Supervised Contrastive Learning

The contrastive loss [5] uses cross-entropy loss to mea-
sure how well the model can classify the “future” repre-
sentation amongst a set of unrelated “negative” samples.
In self-supervised contrastive learning, a single positive is
used for each anchor (augmented version of the same im-
age) and contrasted against the rest of the examples as neg-
atives in the batch as shown in[1}

2.4. Supervised Contrastive Learning

In supervised contrastive learning [1]], clusters of points
belonging to the same class are pulled together in the em-
bedding space, while simultaneously pushing apart clus-
ters of samples from different classes. The main idea of
supervised contrastive learning is to consider many posi-
tives per anchor in addition to many negatives (as opposed
to self-supervised contrastive learning which uses only a
single positive example). These positives are drawn from
samples of the same class as the anchor, rather than being
data augmentations of the anchor, as done in self-supervised
learning. Our methodology compares the supervised cross-
entropy loss with the supervised contrastive loss.

2.5. Curriculum created by infants for statistical
learning

Smith et al. [4] suggests that everyday world and objects
of the infant serves as a training set for statistical learning
that changes as the infant’s sensorimotor abilities develop.
These changing environments could potentially form a cur-
riculum that optimizes learning in different domains. For
example, the infant sees one horse toy from multiple views
and using multiple sensations. They do not see multiple
colors or breeds of horses like commonly constructed im-
age classification datasets used in deep learning today.

2.6. ToyBox Dataset

The Toybox dataset [6] comprises videos of 12 cate-
gories of toys, each with 30 different objects undergoing
10 transformations for approximately 20 seconds each. All
12 of these categories are among the most common early-
learned nouns for typically developing children in the U.S.
The dataset contains around 4,000 frames per category, to-
taling around 44,000 frames when sampled at 1 frame per
second. The dataset was chosen for its developmentally re-
alistic toys and early-learned basic-level categories in child
development.Example images from the dataset can be found
in Appendix Al.

3. Method
3.1. Problem Statement

In this study, we aim to investigate the optimal dataset
strategy as well as optimal learning objective for training
a model to identify objects. Specifically, if the task is of
classifying dogs, we explore whether providing images of
dogs with varying breeds, sizes, and colors or providing im-
ages of a single dog from different viewpoints is more ef-
fective [2]. Additionally, we also explore learning a general
representation for downstream transfer using a supervised
contrastive learning objective vs learning the task directly
using a supervised cross-entropy learning objective. Al-
though this may seem like a trade-off, it is worth noting that
toddlers are capable of categorizing multiple objects during
their developmental period when only the latter is available
to them.

3.2. Training Details
3.3. Supervised Learning with Cross-Entropy Loss

The model used for training is ResNet-18. We used a
cross-entropy loss to train the model for an image classifi-
cation task. In specific, the cross-entropy loss uses labels
and a softmax function to train the classifier. We used two
datasets for training and evaluation. The first dataset was
CIFAR10 and second dataset used was ToyBox dataset. We
trained and evaluated the model on CIFAR10. We used
the following transforms: Random Horizontal Flip, Ran-
dom Resized Crop transform to transform the image to size
224. We trained and evaluated on the ToyBox dataset us-
ing a random train-test split of 90%-10%. We don’t use any
transforms to train this model. We allow the multiple view-
points to act as natural transforms of the dataset. A visual
explanation of the pipeline can be seen in this figure

3.4. Supervised Contrastive Learning

Given an input batch of data, we first apply data aug-
mentation twice to obtain two copies of the batch. Both
copies are forward propagated through the encoder net-
work (ResNet-18) to obtain a 512-dimensional normalized
embedding. During training, this representation is further
propagated through a projection network that is discarded at
inference time. The supervised contrastive loss is computed
on the outputs of the projection network. To use the trained
model for classification, we train a linear classifier on top of
the frozen representations using a cross-entropy loss. A vi-
sual explanation of the pipeline can be seen in this figure 3]
We used a ResNet18 as our encoder to learn representations
along with an MLP as a projection head with an output di-
mension of 128. For the second stage (downstream transfer)
we use the frozen encoder from the pre-training stage and
a linear classifier with a single linear layer giving us prob-
abilities for each loss. This linear classifier is trained with
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Figure 1: Self-Supervised Learning vs Supervised Contrastive Learning : The self-supervised contrastive loss, shown on
uses a single positive for each anchor (an augmented version of the same image) and contrasts it against all other examples
in the batch, which serve as negatives. On the other hand, the supervised contrastive loss contrasts all examples belonging
to the same class against negatives from the remaining examples in the batch. By incorporating class label information, this
approach yields an embedding space where elements belonging to the same class are more closely clustered together than in

the self-supervised case.
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Figure 2: The cross entropy loss uses labels and a softmax
loss to train a classifier

cross-entropy loss. During the first and second stages, for
CIFAR-10 we use the following augmentations:

* RandomResizeCrop
* Horizontal Flip

* Color Jitter

* Random Grayscale

During the first and second stages, for ToyBox we only
use the Random Resize Crop augmentation and once again
allow the multiple viewpoint information to act as natural
augmentations to learn viewpoint invariant representations.

4. Results and Discussion
4.1. Supervised Learning with Cross-Entropy Loss

After training the model on CIFAR-10 using a super-
vised cross-entropy loss, we find that this model achieves
a test accuracy of 92.68%. After training on the ToyBox
dataset using a supervised cross-entropy loss, we find that
this model achieves a test accuracy of 97.56%. Since the

Dataset Model Accuracy

CIFAR10 ResNet-18 92.68%
ToyBox ResNet-18 97.56%

Table 1: Image Classification Task trained on the ToyBox
Dataset using ResNet-18 performs well on the validation
set as compared to the model trained on CIFAR10

view semantics of both datasets are completely different,
there is no correct way to properly evaluate these two meth-
ods. Thus we move on to supervised contrastive-based
learning to see the performance between these two.

More information on training details such as loss curves
and validation accuracy curves can be found in Appendix
A2. The classification accuracy can be found in the table[T]

4.2. Supervised Contrastive Learning

After pre-training the model on CIFAR-10 using a su-
pervised contrastive loss, and using it for a downstream
classification task, we find that it achieves 94.64% accuracy
within 100 epochs. After pre-training the model on ToyBox
using a supervised contrastive loss, and using it for a down-
stream classification task, we find that it achieves 96.39%
accuracy within 20 epochs. More information on training
details such as loss curves can be found in Appendix A3.
The classification accuracies can be found in the table 2?.
We find that using the supervised-contrastive learning ob-
jective, pre-training on the ToyBox dataset leads the model
to learn better and more generalized visual representations
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Figure 3: The cross-entropy loss (left) uses labels and a softmax loss to train a classifier; the self-supervised contrastive loss
(middle) uses a contrastive loss and data augmentations to learn representations. The supervised contrastive loss (right) also
learns representations using a contrastive loss but uses label information to sample positives in addition to augmentations of
the same image. Both contrastive methods can have an optional second stage (downstream transfer) which trains a model on

top of the learned representations.

Dataset Model

CIFAR10 ResNet-18+Linear Classifier 94.64%
ToyBox ResNet-18+Linear Classifier 96.39%

Accuracy

Table 2: Image Classification Task pre-trained on the Toy-
Box Dataset using ResNet-18 using supervised contrastive
loss performs well on the validation set as compared to the
model trained on CIFAR10

as shown by the classification accuracies achieved during
the downstream image classification task.

4.3. Qualitative Comparison

Along with the quantitative evaluation of classification
accuracies, we also evaluate the quality of representations
learned by the various learning objectives pre-trained on
the two datasets. We performed a t-SNE visualization of
the learned embeddings on the two datasets - CIFAR10 and
ToyBox. These visualizations can be viewed in figures []
and

From these visualizations, it is apparent that both the CI-
FAR and ToyBox models, under the supervised objective,
learn only the inter-class variance, and the ToyBox model
fails to learn appropriate boundaries. In contrast, in the con-
trastive case, we can clearly observe the model attempting
to vary the intra-class variance, as shown in the bottom-right
figure (see Fig: [9).

Furthermore, the embeddings of the ToyBox are grouped
according to more fine-grained viewpoints, which is a more
nuanced categorization compared to just using CIFAR 10.

Figure 4: t-SNE visualizations of embeddings learned using
supervised Cross Entropy loss trained on CIFAR10 (top)
and ToyBox (bottom)

Thus, we provide sufficient evidence to support our hy-
pothesis that when toddlers use their hands to explore ob-
jects, the representations they learn are much more fine-
grained than those in traditional datasets used for training
deep learning networks.
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Figure 5: t-SNE visualizations of embeddings learned using
supervised contrastive loss trained on CIFAR10 (top) and
ToyBox (bottom)

5. Conclusion

In conclusion, we were able to show that pre-training on
a multi-view dataset using a supervised contrastive learn-
ing objective helps yield more generalized visual represen-
tations that can be used for downstream tasks such as image
classification. Supervised contrastive learning maximizes
not only inter-class variance but is also able to learn intr-
aclass variance between multiple instances of a class. We
showed that pre-training on the ToyBox dataset consistently
outperforms pre-training on CIFAR10 using both the su-
pervised cross-entropy and supervised contrastive learning
objective. We also find that using supervised contrastive
learning yields better classification accuracies and leads to
more generalizable visual representations than a supervised
cross-entropy learning objective.

Hence, we can conclude that it matters not only the
pre-training dataset used but also the learning objective for
achieving strong generalization performance.
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6. Appendix
6.1. Al

Figure [6] shows example images from each of the 12
classes in the dataset. Figure[/|shows examples from Toy-
Box Dataset with multiple views from a single object class.

Figure([§|shows examples from CIFAR Dataset and com-
pares them to examples from the ToyBox dataset to visual-
ize the semantic differences between the two datasets.

We chose to use CIFAR 10 as our baseline model be-
cause we discovered a high degree of class overlap between
it and the ToyBox dataset, which we intended to use for our
experiments. Despite the fact that the visual semantics of
the two datasets are completely different, we decided to use
CIFAR 10 to ensure a fair comparison between the models.

6.2. A2: Training Details of Supervised Learning
Setup with Cross-Entropy Loss

The loss curves for the model trained on CIFAR10 and
ToyBox using ResNet-18 is shown in figure[9]

The validation accuracy curves for the model trained on
CIFAR10 and ToyBox using ResNet-18 is shown in figure
ma

6.3. A3: Training Details of Supervised Contrastive
Learning

The loss curves for the model trained on CIFAR10 and
ToyBox using ResNet-18 is shown in figure [T}

6.4. A4: Experiment Details

In our experiments, we followed a configuration-style
training approach, which allowed us to easily modify and
fine-tune various hyperparameters of the models. To im-
plement this, we utilized open-source timm models, which
provided us with a wide range of state-of-the-art pre-trained
models to choose from. We would like to express our grat-
itude to the developers of Timm models for making their
code publicly available.

To ensure that our experiments are reproducible, we
saved all the log files generated during training and eval-
uation. These log files contain detailed information about
the training process, including the loss, accuracy, and other
metrics, which can be used to replicate our results.
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Figure 6: Example images from the Toybox dataset [6]]. Each row shows 10 random images from a different class. From the
top to the bottom row, the classes are: airplane, ball, car, cat, cup, duck, giraffe, helicopter, horse, mug, spoon, and truck.
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Figure 7: Frames from a video of a mug rotating around the Y + axis from the ToyBox dataset

Figure 8: Comparison of images from ToyBox dataset (top) and CIFAR10 (bottom). For ToyBox dataset images, household
objects (left) are real, functional objects, though they do come in “adult” and “kiddie” versions. Animals (center) and vehicles
(right) are replicas, either “realistic” scale models or “cartoony” toy objects.
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Figure 9: Training Loss Curve for ResNet18 trained on CI-
FARI10 (top) and ToyBox (bottom)
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Figure 10: Validation Accuracy Curves for ResNetl8
trained on CIFAR10 (left) and ToyBox (right))
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Figure 11: Training Loss Curve for ResNetl8 trained on
CIFARI10 (top) and ToyBox (bottom)



